Bimodal effect of insulin on hormone-stimulated lipolysis: relation to intracellular 3',5'-cyclic adenylic acid and free fatty acid levels.
نویسندگان
چکیده
The present study was undertaken to determine the relationship between the antilipolytic and lipolytic effects of insulin on hormone-stimulated lipolysis and the mechanisms of these reactions. The dose-response curve of norepinephrine-stimulated lipolysis in rat adipocytes was not sigmoidal but biphasic in nature. Intracellular free fatty acid levels were linearly related to lipolytic rate and also described a biphasic profile in response to increments in norepinephrine concentration. Intracellular 3',5'-cyclic AMP levels measured 10 min after addition of increasing concentrations of norepinephrine showed a rise and a plateau followed by a secondary rise. Insulin was antilipolytic at low concentrations of norepinephrine and distinctly lipolytic at high concentrations. The combined antilipolytic and lipolytic effect of insulin is termed the "bimodal" effect of insulin on hormone-stimulated lipolysis. The bimodal effect of insulin correlated positively with changes in peak intracellular 3',5'-cyclic AMP levels. In the presence of glucose, insulin invariably enhanced lipolysis. It is suggested that the antilipolytic effect of insulin is achieved by both inhibition of adenyl cyclase activity and activation of low-K(m) 3',5'-cyclic AMP phosphodiesterase, the net effect being a low accumulation of 3',5'-cyclic AMP. On the other hand, the lipolytic effect of insulin probably reflects enhancement of adenyl cyclase activity to an extent that overrides any activation of low-K(m) 3',5'-cyclic AMP phosphodiesterase activity, resulting in an increase in peak adipocyte 3',5'-cyclic AMP levels.
منابع مشابه
Inhibition of hormone-stimulated lipolysis by clofibrate. A possible mechanism for its hypolipidemic action.
The present study was undertaken to investigate the mechanism of the antilipolytic action of clofibrate (p-chlorophenoxyisobutyrate). Clofibrate, in the dose range of 10-80 mg/199 ml, inhibited the initial rate of norepinephrine-stimulated lipolysis 17-44 percent in isolated rat fat cells. At a dose corresponding to therapeutic levels in vivo (10 mg/100 ml) clofibrate also inhibited hormone-sti...
متن کاملMolecular adaptations of lipolysis to physical activity
The purpose of the present study was to investigate the context of lipid metabolism research in physical activity, lipolysis, lipolysis hormone regulation and the fate of lipolysis products in exercise, fatty acid transporters, some genes involved in lipid metabolism, effect of resistance activity on lipolysis, adaptations of adipose tissue due to physical activity, lipoproteins and apoproteins...
متن کاملReduction in adipocyte ATP by lipolytic agents: relation to intracellular free fatty acid accumulation.
Epinephrine, norepinephrine, ACTH, and dibutyryl 3',5'-cyclic AMP reduced adipocyte ATP levels during 60 min incubation; glucose displayed a protective effect. The reduction in adipocyte ATP levels could not be attributed solely to: a direct hormone effect, deficiency in metabolic substrate, activation of adenyl cyclase with ATP consumption, loss of adenine nucleotide from the cell or loss of c...
متن کاملBranched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes
Short-chain fatty acids (SCFAs), e.g. acetic acid, propionic acid and butyric acid, generated through colonic fermentation of dietary fibers, have been shown to reach the systemic circulation at micromolar concentrations. Moreover, SCFAs have been conferred anti-obesity properties in both animal models and human subjects. Branched SCFAs (BSCFAs), e.g., isobutyric and isovaleric acid, are genera...
متن کاملControle of the metabolism and lipolytic effects of cyclic 3',5'-adenosine monophosphate in adipose tissue by insulin, methyl xanthines, and nicotinic acid.
1. We have tested the hypothesis that insulin might decrease the levels of cyclic AMP (CAMP) in rat epididymal adipose tissue by stimulating the activity of a CAMP phosphodiesterase. 2. Dibutyryl cyclic AMP (DBcAMP) was comparable to CAMP as a substrate for CAMP phosphodiesterase of adipose tissue; the hydrolysis of both cyclic nucleotides was inhibited by theophylline. 3. DBcAMP, but not CAMP,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of lipid research
دوره 14 6 شماره
صفحات -
تاریخ انتشار 1973